finalfit
model wrapperR/glmmultiboot.R
glmmulti_boot.Rd
Using finalfit
conventions, produces a multivariable binomial logistic
regression models for a set of explanatory variables against a binary
dependent.
glmmulti_boot(.data, dependent, explanatory, R = 1000)
Dataframe.
Character vector length 1: name of depdendent variable (must have 2 levels).
Character vector of any length: name(s) of explanatory variables.
Number of draws.
A multivariable glm
fitted model with
bootstrapped confidence intervals. Output is of class glmboot
.
Uses glm
with finalfit
modelling conventions.
boot::boot
is used to draw bootstrapped confidence
intervals on fixed effect model coefficients. Output can be passed to
fit2df
.
library(finalfit)
library(dplyr)
## Note number of draws set to 100 just for speed in this example
explanatory = c("age.factor", "sex.factor", "obstruct.factor", "perfor.factor")
dependent = "mort_5yr"
colon_s %>%
glmmulti_boot(dependent, explanatory, R=100) %>%
fit2df(estimate_suffix="(multivariable (BS CIs))")
#> explanatory OR(multivariable (BS CIs))
#> 1 age.factor40-59 years 0.57 (0.38-1.05, p=0.060)
#> 2 age.factor60+ years 0.81 (0.50-1.35, p=0.280)
#> 3 sex.factorMale 0.98 (0.73-1.29, p=0.980)
#> 4 obstruct.factorYes 1.25 (0.79-1.76, p=0.220)
#> 5 perfor.factorYes 1.12 (0.42-2.04, p=0.840)