finalfit
model
wrapperR/glmmulti.R
glmmulti.Rd
Using finalfit
conventions, produces a multivariable binomial
logistic regression model for a set of explanatory variables against a
binary dependent.
glmmulti(.data, dependent, explanatory, family = "binomial", weights = "", ...)
Data frame.
Character vector of length 1: name of dependent variable (must have 2 levels).
Character vector of any length: name(s) of explanatory variables.
Character vector quoted or unquoted of the error distribution
and link function to be used in the model, see glm
.
Character vector of length 1: name of variabe for weighting. 'Prior weights' to be used in the fitting process.
Other arguments to pass to glm
.
A multivariable glm
fitted model.
Other finalfit model wrappers:
coxphmulti()
,
coxphuni()
,
crrmulti()
,
crruni()
,
glmmixed()
,
glmmulti_boot()
,
glmuni()
,
lmmixed()
,
lmmulti()
,
lmuni()
,
svyglmmulti()
,
svyglmuni()
library(finalfit)
library(dplyr)
explanatory = c("age.factor", "sex.factor", "obstruct.factor", "perfor.factor")
dependent = "mort_5yr"
colon_s %>%
glmmulti(dependent, explanatory) %>%
fit2df(estimate_suffix=" (multivariable)")
#> Waiting for profiling to be done...
#> explanatory OR (multivariable)
#> 1 age.factor40-59 years 0.57 (0.34-0.98, p=0.041)
#> 2 age.factor60+ years 0.81 (0.48-1.36, p=0.426)
#> 3 sex.factorMale 0.98 (0.75-1.28, p=0.902)
#> 4 obstruct.factorYes 1.25 (0.90-1.76, p=0.186)
#> 5 perfor.factorYes 1.12 (0.51-2.44, p=0.770)