Summary of missing values
missing_glimpse(.data, dependent = NULL, explanatory = NULL, digits = 1)
Data frame.
Optional character vector: name(s) of depdendent variable(s).
Optional character vector: name(s) of explanatory variable(s).
Number of decmial places to show for percentage missing.
Data frame.
colon_s %>%
missing_glimpse()
#> label var_type n missing_n missing_percent
#> id id <dbl> 929 0 0.0
#> rx rx <fct> 929 0 0.0
#> sex sex <dbl> 929 0 0.0
#> age Age (years) <dbl> 929 0 0.0
#> obstruct obstruct <dbl> 908 21 2.3
#> perfor perfor <dbl> 929 0 0.0
#> adhere adhere <dbl> 929 0 0.0
#> nodes nodes <dbl> 911 18 1.9
#> status status <dbl> 929 0 0.0
#> differ differ <dbl> 906 23 2.5
#> extent extent <dbl> 929 0 0.0
#> surg surg <dbl> 912 17 1.8
#> node4 node4 <dbl> 929 0 0.0
#> time time <dbl> 929 0 0.0
#> sex.factor Sex <fct> 929 0 0.0
#> rx.factor Treatment <fct> 929 0 0.0
#> obstruct.factor Obstruction <fct> 908 21 2.3
#> perfor.factor Perforation <fct> 929 0 0.0
#> adhere.factor Adherence <fct> 929 0 0.0
#> differ.factor Differentiation <fct> 906 23 2.5
#> extent.factor Extent of spread <fct> 929 0 0.0
#> surg.factor Time from surgery <fct> 912 17 1.8
#> node4.factor >4 positive nodes <fct> 929 0 0.0
#> status.factor Status <fct> 929 0 0.0
#> age.factor Age <fct> 929 0 0.0
#> loccomp loccomp <dbl> 909 20 2.2
#> loccomp.factor Local complications <fct> 909 20 2.2
#> time.years Time (years) <dbl> 929 0 0.0
#> mort_5yr Mortality 5 year <fct> 915 14 1.5
#> age.10 age.10 <dbl> 929 0 0.0
#> mort_5yr.num mort_5yr.num <dbl> 915 14 1.5
#> hospital hospital <fct> 929 0 0.0