This will work with finalfit and any fit2df output.

ff_remove_p(.data)

finalfit_remove_p(.data)

Arguments

.data

Output from finalfit or similar.

Value

Data frame.

Examples

explanatory = c("age.factor", "sex.factor", "obstruct.factor", "perfor.factor")
dependent = 'mort_5yr'
colon_s %>%
  finalfit(dependent, explanatory) %>%
  ff_remove_p()
#> Note: dependent includes missing data. These are dropped.
#> Waiting for profiling to be done...
#> Waiting for profiling to be done...
#> Waiting for profiling to be done...
#> Waiting for profiling to be done...
#> Waiting for profiling to be done...
#>  Dependent: Mortality 5 year                  Alive       Died OR (univariable)
#>                          Age   <40 years  31 (46.3)  36 (53.7)                -
#>                              40-59 years 208 (61.4) 131 (38.6) 0.54 (0.32-0.92)
#>                                60+ years 272 (53.4) 237 (46.6) 0.75 (0.45-1.25)
#>                          Sex      Female 243 (55.6) 194 (44.4)                -
#>                                     Male 268 (56.1) 210 (43.9) 0.98 (0.76-1.27)
#>                  Obstruction          No 408 (56.7) 312 (43.3)                -
#>                                      Yes  89 (51.1)  85 (48.9) 1.25 (0.90-1.74)
#>                  Perforation          No 497 (56.0) 391 (44.0)                -
#>                                      Yes  14 (51.9)  13 (48.1) 1.18 (0.54-2.55)
#>  OR (multivariable)
#>                   -
#>    0.57 (0.34-0.98)
#>    0.81 (0.48-1.36)
#>                   -
#>    0.98 (0.75-1.28)
#>                   -
#>    1.25 (0.90-1.76)
#>                   -
#>    1.12 (0.51-2.44)