When producing conditional estimates from a regression model, it is often useful to set variables not of interest to their mode for factors and mean or median for numerics when creating the newdata object, and combine these with all levels for factors of interest.

ff_expand(.data, ..., cont = "mean")

finalfit_expand(.data, ..., cont = "mean")

Arguments

.data

A data frame or tibble.

...

Factors to expand.

cont

One of "mean" or "median": the summary estimate for continuous variables.

Value

A data frame or tibble with the mode for factors and mean/median for continuous variables, with given factors expanded to include all levels.

See also

Examples

library(dplyr)
colon_s %>% 
select(-hospital) %>% 
ff_expand(age.factor, sex.factor)
#> # A tibble: 6 × 31
#>   age.factor  sex.factor    id rx      sex   age obstruct perfor adhere nodes
#>   <fct>       <fct>      <dbl> <fct> <dbl> <dbl>    <dbl>  <dbl>  <dbl> <dbl>
#> 1 <40 years   Female       465 Obs   0.521  59.8    0.194 0.0291  0.145  3.66
#> 2 <40 years   Male         465 Obs   0.521  59.8    0.194 0.0291  0.145  3.66
#> 3 40-59 years Female       465 Obs   0.521  59.8    0.194 0.0291  0.145  3.66
#> 4 40-59 years Male         465 Obs   0.521  59.8    0.194 0.0291  0.145  3.66
#> 5 60+ years   Female       465 Obs   0.521  59.8    0.194 0.0291  0.145  3.66
#> 6 60+ years   Male         465 Obs   0.521  59.8    0.194 0.0291  0.145  3.66
#> # ℹ 21 more variables: status <dbl>, differ <dbl>, extent <dbl>, surg <dbl>,
#> #   node4 <dbl>, time <dbl>, rx.factor <fct>, obstruct.factor <fct>,
#> #   perfor.factor <fct>, adhere.factor <fct>, differ.factor <fct>,
#> #   extent.factor <fct>, surg.factor <fct>, node4.factor <fct>,
#> #   status.factor <fct>, loccomp <dbl>, loccomp.factor <fct>, time.years <dbl>,
#> #   mort_5yr <fct>, age.10 <dbl>, mort_5yr.num <dbl>